Everything about honey

Honey is a sweet food made by bees using nectar from flowers. The variety produced by honey bees (the genus Apis) is the one most commonly referred to, as it is the type of honey collected by most beekeepers and consumed by people. Honeys are also produced by bumblebees, stingless bees, and other hymenopteran insects such as honey wasps, though the quantity is generally lower and they have slightly different properties compared to honey from the genus Apis. Honey bees convert nectar into honey by a process of regurgitation and evaporation. They store it as a primary food source in wax honeycombs inside the beehive.

Honey gets its sweetness from the monosaccharides fructose and glucose, and has about the same relative sweetness as granulated sugar. It has attractive chemical properties for baking and a distinctive flavor that leads some people to prefer it over sugar and other sweeteners. Most microorganisms do not grow in honey because of its low water activity of 0.6. However, honey sometimes contains dormant endospores of the bacterium Clostridium botulinum, which can be dangerous to infants, as the endospores can transform into toxin-producing bacteria in infants’ immature intestinal tracts, leading to illness and even death.

People who have a weakened immune system should not eat honey because of the risk of bacterial or fungal infection. No evidence shows any benefit of using honey to treat diseases. Providing 64 calories in a typical serving of one tablespoon, honey contains no significant nutrient content.

Honey use and production has a long and varied history. Honey collection is an ancient activity. Humans apparently began hunting for honey at least 8,000 years ago, as evidenced by a cave painting in Valencia, Spain.



Honey’s sugars are dehydrated, which prevents fermentation, with added enzymes to modify and transform their chemical composition and pH. Invertases and digestive acids hydrolyze sucrose to give the monosaccharides glucose and fructose. Invertase is one of these enzymes synthesized by the body of the insect.

Honey bees transform saccharides into honey by a process of regurgitation, a number of times, until it is partially digested. The bees do the regurgitation and digestion as a group. After the last regurgitation, the aqueous solution is still high in water, so the process continues by evaporation of much of the water and enzymatic transformation.

Honey is produced by bees as a food source. To produce about 500 g of honey, foraging honey bees have to travel the equivalent of three times around the world. In cold weather or when fresh food sources are scarce, bees use their stored honey as their source of energy. By contriving for bee swarms to nest in artificial hives, people have been able to semidomesticate the insects and harvest excess honey. In the hive or in a wild nest, the three types of bees are:
• a single female queen bee
• a seasonally variable number of male drone bees to fertilize new queens
• 20,000 to 40,000 female worker bees

The worker bees raise larvae and collect the nectar that will become honey in the hive. Leaving the hive, they collect sugar-rich flower nectar and return.
In the hive, the bees use their “honey stomachs” to ingest and regurgitate the nectar a number of times until it is partially digested. Invertase synthesized by the bees and digestive acids hydrolyze sucrose to give the same mixture of glucose and fructose. The bees work together as a group with the regurgitation and digestion until the product reaches a desired quality. It is then stored in honeycomb cells. After the final regurgitation, the honeycomb is left unsealed. However, the nectar is still high in both water content and natural yeasts, which, unchecked, would cause the sugars in the nectar to ferment. The process continues as bees inside the hive fan their wings, creating a strong draft across the honeycomb, which enhances evaporation of much of the water from the nectar. This reduction in water content raises the sugar concentration and prevents fermentation. Ripe honey, as removed from the hive by a beekeeper, has a long shelf life, and will not ferment if properly sealed.

Another source of honey is from a number of wasp species, such as the wasps Brachygastra lecheguana and Brachygastra mellifica, which are found in South and Central America. These species are known to feed on nectar and produce honey.

Some wasps, such as the Polistes versicolor, even consume honey themselves, switching from feeding on pollen in the middle of their lifecycles to feeding on honey, which can better provide for their energy needs.


Honey is collected from wild bee colonies, or from domesticated beehives. Wild bee nests are sometimes located by following a honeyguide bird. The bees may first be pacified by using smoke from a bee smoker. The smoke triggers a feeding instinct (an attempt to save the resources of the hive from a possible fire), making them less aggressive and the smoke obscures the pheromones the bees use to communicate.

The honeycomb is removed from the hive and the honey may be extracted from that, either by crushing or by using a honey extractor. The honey is then usually filtered to remove beeswax and other debris.

Before the invention of removable frames, bee colonies were often sacrificed in order to conduct the harvest. The harvester would take all the available honey and replace the entire colony the next spring. Since the invention of removable frames, the principles of husbandry lead most beekeepers to ensure that their bees will have enough stores to survive the winter, either by leaving some honey in the beehive or by providing the colony with a honey substitute such as sugar water or crystalline sugar (often in the form of a “candyboard”). The amount of food necessary to survive the winter depends on the race of bees and on the length and severity of local winters.


Indicators of quality
High-quality honey can be distinguished by fragrance, taste, and consistency. Ripe, freshly collected, high-quality honey at 20 °C (68 °F) should flow from a knife in a straight stream, without breaking into separate drops. After falling down, the honey should form a bead. The honey, when poured, should form small, temporary layers that disappear fairly quickly, indicating high viscosity. If not, it indicates excessive water content (over 20%) of the product. Honey with excessive water content is not suitable for long-term preservation.

In jars, fresh honey should appear as a pure, consistent fluid, and should not set in layers. Within a few weeks to a few months of extraction, many varieties of honey crystallize into a cream-colored solid. Some varieties of honey, including tupelo, acacia, and sage, crystallize less regularly. Honey may be heated during bottling at temperatures of 40–49 °C (104–120 °F) to delay or inhibit crystallization. Overheating is indicated by change in enzyme levels, for instance, diastase activity, which can be determined with the Schade or the Phadebas methods. A fluffy film on the surface of the honey (like a white foam), or marble-colored or white-spotted crystallization on a containers sides, is formed by air bubbles trapped during the bottling process.

A 2008 Italian study determined nuclear magnetic resonance spectroscopy can be used to distinguish between different honey types, and can be used to pinpoint the area where it was produced. Researchers were able to identify differences in acacia and polyfloral honeys by the differing proportions of fructose and sucrose, as well as differing levels of aromatic amino acids phenylalanine and tyrosine. This ability allows greater ease of selecting compatible stocks.


Acid content and flavor effects
The average pH of honey is 3.9, but can range from 3.4 to 6.1. Honey contains many kinds of acids, both organic and amino. However, the different types and their amounts vary considerably, depending on the type of honey. These acids may be aromatic or aliphatic (non-aromatic). The aliphatic acids contribute greatly to the flavor of honey by interacting with the flavors of other ingredients.

Organic acids comprise most of the acids in honey, accounting for 0.17–1.17% of the mixture, with gluconic acid formed by the actions of an enzyme called glucose oxidase as the most prevalent. Other organic acids are minor, consisting of formic, acetic, butyric, citric, lactic, malic, pyroglutamic, propionic, valeric, capronic, palmitic, and succinic, among many others.